Pipelines
Build composable AI workflows with runnable pipelines - chain models, messages, and transformers for powerful data processing.
📋 Table of Contents
🎯 What are Pipelines?
Key Benefits
Real-World Analogy
🏗️ Pipeline Architecture
The IAiRunnable Interface
Built-in Runnable Components
Component
Purpose
Example
Pipeline Flow
🔨 Building Pipelines
Method 1: Fluent Chaining with .to()
.to()Method 2: Helper Methods
Method 3: Explicit Sequence
📥 Input and Output Flow
Data Passing
Input Types
Component
Input Type
Example
Output Types
🔄 Transform Pipelines
Simple Transformations
Pre-Processing
Post-Processing
Bidirectional Processing
🎭 Multi-Step Workflows
Draft-Refine Pattern
Analysis-Enhancement Pattern
Validation Pipeline
🔀 Multi-Model Pipelines
Model Specialization
Parallel Processing
Dynamic Model Selection
♻️ Reusable Templates
Parameterized Pipelines
Pipeline Factories
Composable Building Blocks
📡 Streaming Pipelines
Stream Execution
Stream Processing
Conditional Streaming
⚙️ Parameters and Options
Default Parameters
Runtime Parameters
Options vs Parameters
🎬 Pipeline Events
Available Events
Event
When
Data
Event Interception
🐛 Debugging Pipelines
Print Pipeline Structure
Inspect Steps
Step-by-Step Execution
⚡ Performance Optimization
Choose the Right Model
Minimize Steps
Cache Results
Parallel Execution
🔒 Error Handling
Try-Catch Patterns
Graceful Degradation
Validation Pipelines
📚 Best Practices
Design Principles
Common Patterns
Anti-Patterns to Avoid
🔗 Related Documentation
Last updated