Embeddings
🎯 What are Embeddings?
🏗️ Embedding Architecture
"cat" → [0.2, -0.5, 0.8, 0.1, ...] (1536 dimensions)
"kitten" → [0.3, -0.4, 0.7, 0.2, ...] (similar vector)
"car" → [-0.6, 0.3, -0.2, 0.9, ...] (different vector)🔧 The aiEmbed() Function
aiEmbed() Function🔄 Embedding Generation Flow
Basic Usage
Single Text
Batch Processing
Configuration Options
Provider Selection
Model Selection
Return Formats
Raw Response (Default)
Embeddings Array
First Vector
💡 Use Cases
🔍 Semantic Search
Semantic Search Flow
Text Clustering
Recommendations
Duplicate Detection
RAG (Retrieval Augmented Generation)
Advanced Techniques
Dimension Reduction
Caching Embeddings
Batch Optimization
Chunked Document Embeddings
Provider Comparison
OpenAI
Ollama
Gemini
Voyage AI
Cohere
Best Practices
1. Choose the Right Model
2. Batch When Possible
3. Cache Embeddings
4. Normalize Text
5. Handle Errors Gracefully
6. Monitor Costs
Troubleshooting
Empty or Invalid Embeddings
Dimension Mismatches
Similarity Scores
Summary
Last updated