Main Components
Core building blocks for AI agents and pipelines in BoxLang - your guide to mastering AI development
Welcome to the heart of BoxLang AI! This section introduces the essential building blocks you'll use to create intelligent applications. Whether you're building chatbots, autonomous agents, or complex AI workflows, these components are your toolkit.
🎯 What You'll Learn
BoxLang AI uses a runnable pipeline architecture - think of it as composable LEGO blocks for AI:
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Messages │───▶│ AI Model │───▶│ Transform │───▶│ Result │
│ Template │ │ (OpenAI) │ │ (Extract) │ │ │
└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘Each component:
🔗 Chains easily - Connect pieces with
.to()♻️ Reuses workflows - Define once, run many times
🧩 Composes freely - Mix and match as needed
🎯 Stays flexible - Swap providers without refactoring
📚 Learning Path
We recommend learning the components in this order for the best experience:
START HERE
↓
┌──────────────────────────────────────────────────────────────┐
│ 1️⃣ Models - Connect to AI providers (OpenAI, Claude, etc.) │
└──────────────────────────────────────────────────────────────┘
↓
┌──────────────────────────────────────────────────────────────┐
│ 2️⃣ Messages - Build conversations with templates │
└──────────────────────────────────────────────────────────────┘
↓
┌──────────────────────────────────────────────────────────────┐
│ 3️⃣ Streaming - Real-time responses for better UX │
└──────────────────────────────────────────────────────────────┘
↓
┌──────────────────────────────────────────────────────────────┐
│ 4️⃣ Structured Output - Extract typed data from responses │
└──────────────────────────────────────────────────────────────┘
↓
┌──────────────────────────────────────────────────────────────┐
│ 5️⃣ Tools - Enable AI to call your functions │
└──────────────────────────────────────────────────────────────┘
↓
┌──────────────────────────────────────────────────────────────┐
│ 6️⃣ Memory - Maintain conversation context │
└──────────────────────────────────────────────────────────────┘
↓
┌──────────────────────────────────────────────────────────────┐
│ 7️⃣ Agents - Autonomous AI with memory & tools │
└──────────────────────────────────────────────────────────────┘
↓
┌──────────────────────────────────────────────────────────────┐
│ 8️⃣ Pipelines - Build composable AI workflows │
└──────────────────────────────────────────────────────────────┘
↓
┌──────────────────────────────────────────────────────────────┐
│ 9️⃣ Transformers - Data processing in pipelines │
└──────────────────────────────────────────────────────────────┘
↓
┌──────────────────────────────────────────────────────────────┐
│ 🔟 Vector Memory - Semantic search for RAG apps │
└──────────────────────────────────────────────────────────────┘
↓
┌──────────────────────────────────────────────────────────────┐
│ 1️⃣1️⃣ Document Loaders - Import content from any source │
└──────────────────────────────────────────────────────────────┘
↓
┌──────────────────────────────────────────────────────────────┐
│ 1️⃣2️⃣ RAG - Complete retrieval-augmented generation workflow │
└──────────────────────────────────────────────────────────────┘Quick Paths:
🚀 Building a chatbot? → Start with Models → Messages → Memory → Agents
📊 Extracting data? → Start with Models → Structured Output → Transformers → Pipelines
🔍 Building RAG? → Start with Document Loaders → Vector Memory → RAG → Agents
🛠️ Creating workflows? → Start with Models → Transformers → Pipelines → Agents
🧱 Core Components
1️⃣ AI Models
What: Direct AI provider integrations (OpenAI, Claude, Gemini, Ollama, etc.)
When to use: Every AI application - this is your foundation
Quick example:
Key concepts:
Provider abstraction
Parameter configuration
Return formats (text, JSON, XML, raw)
Pipeline composition
2️⃣ Messages
What: Reusable message templates with dynamic placeholders and multi-modal content
When to use: Repeated prompts, variable content, organized conversations
Quick example:
Key concepts:
Role-based messages (system, user, assistant)
Variable binding with
${}placeholdersMultimodal content (images, audio, documents)
Message reusability
3️⃣ Streaming
What: Real-time token-by-token response delivery
When to use: Interactive UIs, chatbots, long responses
Quick example:
Key concepts:
Callback functions
Progressive UI updates
Streaming with agents
Performance optimization
What: Extract typed data from AI responses into classes/structs
When to use: Form extraction, data parsing, type-safe results
Quick example:
Key concepts:
Class population
JSON schema generation
Array extraction
Validation
→ Read Structured Output Guide
5️⃣ Tools
What: Functions that AI can call to access data or perform actions
When to use: Real-time data, external APIs, database queries
Quick example:
Key concepts:
Function calling
Parameter schemas
Tool registration
Autonomous invocation
6️⃣ Memory
What: Conversation context management strategies
When to use: Multi-turn conversations, context preservation
Quick example:
Key concepts:
Memory types (windowed, summary, session, file)
Context limits
Memory persistence
Multiple memory strategies
7️⃣ Agents
What: Autonomous AI entities with memory, tools, and reasoning
When to use: Complex workflows, multi-step tasks, autonomous behavior
Quick example:
Key concepts:
Autonomous reasoning
Tool selection
Memory integration
Sub-agents
8️⃣ Pipelines
What: Composable AI workflows - chain models, messages, and transformers
When to use: Complex multi-step workflows, reusable templates, data processing flows
Quick example:
Key concepts:
Runnable interface (IAiRunnable)
Fluent chaining with
.to()Template reusability
Multi-step workflows
Data flow and transformations
9️⃣ Transformers
What: Data processing steps in pipelines
When to use: Format conversion, data extraction, custom logic
Quick example:
Key concepts:
Pipeline transformations
Data extraction
Format conversion
Custom processors
What: Semantic search through conversation history
When to use: RAG applications, knowledge bases, semantic retrieval
Quick example:
Key concepts:
Embedding generation
Similarity search
Vector stores (Chroma, Pinecone, etc.)
RAG workflows
1️⃣1️⃣ Document Loaders
What: Import content from files, directories, URLs, databases, and APIs
When to use: Building knowledge bases, RAG systems, data ingestion pipelines
Quick example:
Key concepts:
12+ built-in loaders (Text, Markdown, CSV, JSON, XML, PDF, etc.)
Automatic metadata extraction
Chunking strategies
Directory traversal
Direct vector memory integration
What: Complete workflow for answering questions using your documents
When to use: Q&A systems, documentation search, knowledge bases, chatbots with domain expertise
Quick example:
Key concepts:
Document loading and chunking
Embedding generation
Vector similarity search
Context injection
Source attribution
Hybrid search (keyword + semantic)
🔗 Understanding Pipelines
Pipelines are the foundation of BoxLang AI - they connect components into workflows:
Basic Pipeline Flow
The .to() Method
.to() MethodChain components together:
Pipeline Benefits
Example - Reusable Pipeline:
🎨 Common Patterns
Pattern 1: Simple Q&A
Pattern 2: Templated Conversations
Pattern 3: Agent with Tools
Pattern 4: RAG (Retrieval Augmented Generation)
Pattern 5: Multi-Step Processing
🚀 Quick Start Examples
Example 1: Your First Pipeline (3 lines)
Example 2: Chatbot with Memory (5 lines)
Example 3: Function Calling (8 lines)
Example 4: Data Extraction (6 lines)
💡 Tips for Success
Start simple - Master models and messages before agents
Test incrementally - Build pipelines step by step
Reuse components - Create libraries of templates and agents
Monitor costs - Use appropriate models for each task
Read the guides - Each component page has detailed examples
Ready to build? Start with AI Models →
Last updated