Transformers & Return Formats
The guide to data transformation between AI pipeline steps using built-in return formats and custom transformers.
📖 Table of Contents
🎯 Built-In Transformers: Return Formats
🏗️ Transformation Pipeline
📊 Available Return Formats
Format
Description
Returns
Use Case
Single Format (Default for Functions)
All Format
Raw Format (Default for Pipelines)
JSON Format (NEW!)
XML Format (NEW!)
Using Return Formats in Pipelines
Comparing Formats
🧰 Core Built-In Transformers
CodeExtractorTransformer
Option
Type
Default
Description
XMLExtractorTransformer
Option
Type
Default
Description
AiTransformRunnable
🔧 Custom Transformers
🔄 Custom Transform Flow
Inline Transform
Using aiTransform()
aiTransform()Named Transformer
Return Format Examples in Pipelines
Simple Text Extraction with .singleMessage()
JSON Data Extraction with .asJson()
XML Document Generation with .asXml()
Full Response with .rawResponse()
Conversation History with .allMessages()
Combining Return Formats with Custom Transforms
JSON Then Transform
XML Then Extract Data
Raw Response for Debugging
Common Transformations
Extract Content from Raw Response
String Manipulation
Parse JSON
Extract Code
⛓️ Chaining Transforms
🔗 Transform Chain Architecture
Sequential Processing
Data Enrichment
Options in Transformers
Advanced Transforms
Conditional Logic
Error Handling
Data Validation
Practical Examples
Markdown to HTML
SQL Generator
Response Cache
Multi-Format Output
Transform Patterns
Filter Pattern
Map Pattern
Reduce Pattern
Aggregate Pattern
Transform Library
TransformAndRun Shortcut
Best Practices
Testing Transforms
🏗️ Building Your Own Transformers
Next Steps
Last updated