aiMemory
Create AI memory instances for storing conversation history, context, or knowledge bases.
🧠 Memory Types Overview
Syntax
aiMemory(memory, key, userId, conversationId, config)Parameters
memory
string
No
(config)
Memory type to create
key
string
No
UUID
Unique identifier for memory instance
userId
string
No
""
User identifier for multi-tenant isolation
conversationId
string
No
""
Conversation identifier for multiple conversations
config
struct
No
{}
Configuration struct for the memory instance
Memory Types
Conversation Memory Types
window
Buffer of recent messages
Short-term conversation context
cache
CacheBox-backed memory
Distributed conversation storage
file
File-based persistence
Simple local persistence
jdbc
Database-backed memory
Enterprise conversation storage
session
Session-scoped memory
User session conversations
summary
Summarized conversation history
Long conversations with summaries
Vector Memory Types (RAG)
boxvector
Built-in vector storage
Development, small datasets
chroma
ChromaDB vector database
Production RAG, local/cloud
milvus
Milvus vector database
Large-scale vector search
mysql
MySQL vector extension
MySQL vector search
typesense
Typesense vector search
Fast semantic search
pgvector
PostgreSQL vector extension
PostgreSQL-based RAG
pinecone
Pinecone cloud vectors
Managed cloud vector DB
qdrant
Qdrant vector database
High-performance vectors
weaviate
Weaviate vector database
GraphQL vector queries
hybrid
Combined vector + conversation
Best of both worlds
Returns
Returns an IAiMemory instance with methods:
add(message)- Add message to memoryget(limit)- Retrieve messagesclear()- Clear all messagesseed(documents)- Bulk add documents (vector memory)search(query, limit)- Semantic search (vector memory)getRelevant(query, limit)- Get relevant context
Examples
Window Memory (Default)
Vector Memory for RAG
Multi-Tenant Memory
Cache Memory
File Memory
JDBC Memory
Summary Memory
Multiple Memories
Manual Memory Operations
Vector Memory Search
Configuration Options by Type
Window Memory
Vector Memory
Cache Memory
File Memory
Notes
Auto-detection: Default memory type from module configuration
Multi-tenant: Use
userIdandconversationIdfor isolationVector RAG: Vector memories automatically search for context
Conversation history: Window/cache memories maintain chat context
Persistence: File, JDBC, and cache memories persist across requests
Hybrid: Combine multiple memory types for different purposes
Related Functions
aiAgent()- Use memory with agentsaiDocuments()- Load documents into memoryaiEmbed()- Generate embeddings
Best Practices
Last updated